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Chapter 3. WINTER HYDROLOGY

M.R. Savabi, R.A. Young, G.R. Benoit, J.M. Witte and D.C. Flanagan

3.1 Introduction

The winter hydrology component of the WEPP computer model is designed to simulate snow
accumulation and density, snowmelt, and soil frost and thaw, all on a hourly basis. The snow
accumulation routine predicts whether the hourly falling precipitation is rain or snow, as well as changes
in snow depth and density. The melt component estimates the amount of snowmelt occurring for any
given hour during the day. The frost component estimates the extent of frost development and thawing
over the winter period as well as changes in soil water content and infiltration capacity of the soil during
the winter period.

Winter hydrologic processes are an important part of the hydrology of watersheds located mainly
north of 40 degrees latitude in the Northern hemisphere and south of 40 degrees latitude in the Southern
hemisphere. Soil freezing and thawing influence the soil physical properties such as hydraulic
conductivity, erodibility and soil water holding capacity. Freezing modifies the physical characteristics
of soil, changing its ability to transmit or retain water (Benoit and Bornstein, 1970; Benoit and
Mostaghimi, 1985; Campbell et al., 1970; Loch and Kay, 1978), its structural stability (Benoit, 1973;
Mostaghimi et al., 1988), and its erodibility (Bisal and Nielsen, 1967). The development of soil frost is
the result of complex interactions of several primary factors, including soil characteristics, type of tillage
and residue management, surface roughness, type of vegetative cover, duration and extent of freezing
temperatures, and the extent and timing of snow cover. The freezing process itself modifies those soil
physical properties that, along with temperature, determine the depth and duration of soil frost. The
magnitude of soil changes that takes place as a result of soil freezing depends on freezing temperature,
soil water content at freezing, initial size of soil aggregates, and the number of freeze-thaw cycles that
take place over winter. As a result, tillage-residue management combined with over winter frost action
determines a soil’s erodibility during winter thaw periods and from spring snowmelt to planting (Benoit
et al., 1986).

Within the daily simulation mode, the winter routine is called if the following conditions prevail 1)
a snowpack already exists 2) a soil frost layer already exists 3) average daily temperature is less than 0oC.
The winter hydrology routine works on a hourly basis, however, the WEPP climate input file provides
daily values for precipitation, maximum and minimum temperature, dew point temperature and incoming
radiation. Therefore, hourly precipitation, temperature and radiation need to be calculated before
simulating snow accumulation or melt and frozen soil. In addition, the time of day when precipitation is
occurring is needed in order to differentiate between snowfall and rainfall given hourly temperature.

3.2 Hourly Precipitation

For the case where the breakpoint precipitation option is selected in the climate input file, the amount
of precipitation is calculated for each hour. The time when precipitation begins is available in this case.
For the case when precipitation amount, duration of storm, time to peak/duration and ratio of maximum
to average intensity option is selected, the disaggregation routine (Chapter 2) is used to determine the
hourly precipitation. Furthermore, a random generation routine is used to estimate the time precipitation
start.
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3.3 Hourly Temperature

The daily minimum and maximum air temperature values are required input data. However, hourly
air temperature and hourly temperature of the soil-snow-residue are needed for snowmelt and/or frost or
thaw simulation. The equations to estimate the hourly distribution given daily temperature are taken
from DeWit et al. (1978). In the WEPP model, we assume that the lowest temperature of the day occurs
just before sunrise and the highest temperature of the day occurs at 2:00 pm. We also assume that
between sunrise and 2:00 pm the temperature increases; otherwise the temperature decreases. Between
sunrise and 2:00 pm, the hourly temperature is calculated using the following equation:

Thr = Tave −
2

(T max − T min)hhhhhhhhhhhh cos
I
J
L 14 − thrsr

π(thr − 0.5 − thrsr)hhhhhhhhhhhhhhh
M
J
O

[3.3.1]

At all other times during the day, the hourly temperature is calculated using the following equation:

Thr = Tave +
2

(T max − T min)hhhhhhhhhhhh cos
I
J
L 10 + thrsr

π (thradj)hhhhhhhhh
M
J
O

[3.3.2]

where Thr is the hourly temperature ( oC), Tave is the average air temperature of the day ( oC), T max is the
maximum air temperature of the day ( oC), T min is the minimum air temperature of the day ( oC), thrsr is
the sunrise hour (h), thradj is the adjusted hour and is equal to thr − 0.5 − 14 after 2:00 pm and it is equal
to thr − 0.5 + 10 for the period before 2:00 pm, where thr is the current time of day (h). The average dew
point temperature of the day is used to approximate the hourly dew point temperature, Thrdp ( oC).

The model calculates the hourly adjusted surface temperature, Thra ( oC), at the top surface of the
residue-snow-frozen-layer system using a method suggested by Flerschinger et al. (1987). The hourly
surface temperature is calculated using the following equation:

Thra =
radco + conht (100 vwind) +

depth
efthcohhhhhh

Rnet + (radco + conht (100 vwind)) Tavehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh [3.3.3]

where Thra is hourly surface temperature ( oC), Rnet is net radiation (Ly .min−1), conht is convective heat
transfer coefficient (Ly .s .min−1.cm−1), radco is radiation coefficient (Ly .s .min−1.cm−1), vwind is wind
velocity (cm.s−1), efthco is effective system thermal conductivity (L .min−1. oC −1), and depth is the
system depth (m).

Net radiation, Rnet , is a calculated by the following equation:

Rnet = Rslp (1.0 − alb) + (atem − suem) SBC Tavek
4 [3.3.4]

where Rslp is solar radiation on a sloping surface (Ly .min−1), alb is soil and/or snow albedo (%/100%),
atem is atmospheric emissivity, suem is surface emissivity, SBC is the Stefan-Boltzman constant and is
equal to 8.1247 x 10−11 Ly .min−1.oK −4 and Tavek is hourly air temperature ( oK). The surface emissivity,
suem, for all layers is approximately 1.0. The radiation value is the same value of hourly radiation on a
sloping surface that is calculated by the model (SUNMAP routine).

The surface albedo is dependent on the surface cover. If there is more than 0.5 centimeter of snow
on the surface, then the albedo will be that of snow (0.5), otherwise it will be the same as the soil’s
albedo.
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The atmospheric emissivity is a function of cloud cover and temperature.

atem = (1.0 − 0.84 clouds) (1.0 − 0.261 e x) + 0.84 clouds [3.3.5]

where clouds is the decimal fraction value for cloud cover, and x is equal to 0.000777Tave
2 .

The decimal fraction value for cloud cover is calculated using the following equation:

clouds =
0.7

1.0 −
Rpot

Rslphhhh

hhhhhhhhhh
[3.3.6]

Both the radiation, Rslp (MJ .m−2), and potential radiation, Rpot (MJ .m−2), are daily values on the
horizontal surface. This equation is based on the fact that clouds reflect approximately 70% of solar
radiation and transmit only 30% to the earth’s surface (Sutton, 1953). Both Rslp and Rpot are calculated in
a separate subroutine based on the slope inclination, the slope facing direction or aspect, the calendar day,
the predicted radiation from the climate input file, a solar constant and the latitude (Swift and Luxmoore,
1973). This method takes into account the effects of cloud cover and atmospheric transmissivity. The
slope inclination, I, is calculated as:

I = arctan
R
J
Q 100

Shhhh
H
J
P

[3.3.7]

where S is the land slope (%).

The convective heat transfer coefficient (conht) in equation 3.3.3 is calculated by the following
equation:

conht =

log
I
J
L etr

Uz − disp + etrhhhhhhhhhhhhh
M
J
O

log
I
J
L wsr

Uz − disp + wsrhhhhhhhhhhhhhh
M
J
O

0.42 ρair hcahhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
[3.3.8]

where, 0.4 is the von Karman’s constant, ρair is air density in kg .m−3 and is about 1.0, hca is heat
capacity of the air and is equal to 101 J .kg−1.m−3, Uz is wind measurement height, usually 2 meters, disp
is the zero plane displacement (m), etr is energy transfer roughness (m), and wsr is wind surface
roughness (m). The value of zero plane displacement is a function of the canopy height and is calculated
by the following equation:

disp = 0.77 Hc
[3.3.9]

when Hc is the canopy height (m).

The canopy cover data is available within the WEPP model. However, the wind surface roughness,
wsr, could be any of several values. If there is no snow on the ground, the wind surface roughness is that
of the canopy or soil surface if no canopy cover value is present. Otherwise if snow is present, then the
roughness is equal to (0.13 + Hc − Dsnew) where Dsnew is the snow depth (m). If the snow is deeper than
the canopy, then the wind surface roughness is set to 0.0002 meters. The energy transfer roughness, etr
(m), is a function of wind surface roughness and is calculated using
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etr = 0.2 wsr [3.3.10]

When dealing with a layered system depth, the model calculates the gradient depth from the soil layer
down to the first zero degree isotherm. The model also makes the assumption that if the frozen-layered
system contains a top thaw layer that is greater than half of the top frost layer depth, it is all thawed and
the gradient depth is set to 0. However, if a top thaw layer exists but it is less than half of the top frost
layer depth, the model ignores that layer and treats it as all frozen. To calculate the heat transfer of a
frozen-layered system, the model uses the harmonic mean for the layers in the system. The value of the
harmonic mean is assigned to the variable surface thermal conductivity.

3.4 Aspect Adjustment

The aspect of a hillslope relative to the sun’s angle which impinges upon it is calculated in the
ASPECT subroutine. Values for slope steepness, slope aspect, latitude in radians, equivalent latitude, and
the change in longitude with respect to equivalent slope and latitude are also calculated in this subroutine.
The average slope of the Overland Flow Element (OFE) is calculated and converted to a decimal fraction
and then to radians (incrad). The variable radz is the slope aspect in units of radians. These variables are
then used to calculate the equivalent latitude and the change in longitude with respect to equivalent slope
and latitude using the following equations:

eqla = arcsin I
Lcos (incrad) sin (latrad) + sin (incrad) cos (latrad) cos (radz) M

O
[3.4.1]

dellon = arctan
I
J
L cos(incrad) cos(latrad) − sin(incrad) sin(latrad) cos(radz)

sin(incrad) sin(radz)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
M
J
O

[3.4.2]

where, eqla is equivalent latitude factor (rad), incrad is slope inclination (rad), radz is slope aspect (rad),
latrad is latitude (rad), and dellon is change of longitude (rad). The values of eqla and dellon are used to
adjust hourly radiation for the aspect effect.

3.5 Hourly Radiation

The method that calculates hourly radiation given the daily radiation is based on work by Swift and
Luxmoore (1973) and Jensen et al. (1990). This calculation is done in the WEPP SUNMAP subroutine.
This function returns the ratio between the potential radiation and the estimated radiation on a sloping
surface for the day. This ratio distributes the daily value of solar radiation over a bell-shaped curve on an
hourly basis.

The factor which represents the ratio of the radiation on the slope for the given hour to the total
estimated radiation on the slope for the day is

RADF =
π

720hhhh (SOLO) (RELD) cos (latrad) cos (SUND) I
Lsin (HASR) − sin (HAST) M

O

+ (HASR − HAST) sin (latrad) sin (SUND) [3.5.1]

where SOLCO is the solar constant (0.082 MJ .m−2.min−1), RELD is the relative distance of the earth from
the sun (rad), SUND is the sun declination (rad), HASR is the position of the sun at sunrise (rad), and
HAST is the position of the sun at sunset (rad). The relative distance of the earth from the sun (RELD)
given the day of year is calculated by
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RELD = 1.0 + 0.033 cos
I
J
L 365
2 π jdayhhhhhhhh

M
J
O

[3.5.2]

where jday is the Julian day. The position of the sun at sunset (HAST) and sunrise (HASR) is calculated
using

HAST = HAS −
24
πhhh [3.5.3]

HASR = HAS +
24
πhhh [3.5.4]

where HAS is the hour angle of the sun (rad). For a one hour time step, HASR − HAST = π/12. Based on
the day of simulation the model calculates the sun’s angle in the sky for each hour of the day. Hour angle
of the sun (HAS) is calculated by

HAS = I
L
thr + 0.06667 (LS − L 1) + STC − 12 M

O 12
πhhh [3.5.5]

where LS is longitude (rad) of the center of the local time zone, L 1 is longitude of the site (rad). LS for
the eastern U.S. time zone is 1.3090 radians, central U.S. time zone is 1.5708 radians, mountain U.S. time
zone is 1.8326 radians, and pacific U.S. time zone is 2.0944 radians. STC is the solar time correction and
is calculated in radians using the equation:

STC = 0.1645 sin (2 DF) − 0.1255 cos (DF) − 0.025 sin (DF) [3.5.6]

where DF is a day factor which represents the day of the simulation. Day factor is calculated by the
following:

DF =
365

2 π (jday − 81)hhhhhhhhhhhhh [3.5.7]

The radiation factor (RADF) is then used to calculate hourly radiation. The hourly estimated
radiation (hrrad) on a sloping surface is estimated by multiplying the daily radiation on a sloping surface
by the radiation factor. The variables calculated in the SUNMAP routine are potential horizontal
radiation, Rpot (MJ .m−2), radiation on sloping surfaces on a hourly basis, hrrad (MJ .m−2), and half-day
length (h). These values are used in the snowmelt calculations.

3.6 Snowmelt

The snowmelt calculations are performed in the MELT subroutine which is called from the main
WINTER routine. The MELT routine is only called on hours of days when snow depth is greater than
zero. The model calculates snowmelt and water melt separately to make sure that the snow density is 350
kg .m−3 before any snow melting is allowed to occur. If water melt is calculated, but the snow density is
< 350 kg .m−3, no snowmelt is allowed to occur and the depth of the snowpack is decreased while the
density of the snowpack is increased. In such a case, no water melt will be present because it all remains
in the snowpack. If the density is less than but near 350 kg .m−3, and there is a significant amount of
water melt, then the depth of the snowpack is decreased and the density is increased until it reaches 350
kg .m−3. Any water melt occurring after this point is passed to the DISAG routine for infiltration
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calculation. The hrmelt values are treated like breakpoint rainfall data. The water melt is recalculated
based on the newly calculated snow depth and snow density. For this reason, the amount of melt
calculated in the MELT subroutine and the final value of melt water for the hour (hrmelt) may not be the
same.

The amount of water produced from a snowpack depends on the hourly weather and surface
conditions. The equation to calculate the amount of water melt occurring for the hour-long period of time
(hrmelt) is a modification of a generalized basin snowmelt equation for melt in open areas developed by
the U.S. Army Corp of Engineers (1956, 1960). The equation was modified by Hendrick et al. (1971) to
adapt it for use with readily available meteorological and environmental data. The Hendrick equation
was further modified to make it compatible for use within the WEPP computer program.

hrmelt = 0.0254 (amelt − bmelt + cmelt + dmelt) [3.6.1]

for hrmelt ≤ Dsnew , where hrmelt is hourly melt water, 0.0254 is a conversion factor from inches to
meters, and equations for calculating amelt, bmelt, cmelt, and dmelt follow. The first part, amelt,
represents the hourly radiation (hrrad) component of the melt equation and is calculated using:

amelt = 0.0607 hrrad (1.0 − cancov) [3.6.2]

where 0.0607 is a radiation conversion factor from MJ to Ly, hrrad is hourly calculated radiation
(MJ .m−2), and cancov is canopy cover, (0-1). During hours of no sunlight, amelt will be zero. However,
since some snowmelt can occur in direct solar radiation to about 3°C below freezing (Hendrick et al.,
1971) therefore, when the hourly temperature (hrtem) is < 0.0 but > -4 .0, it is assumed that a small
amount of melt will occur. This adjustment is made by the following equation.

amelt = amelt (0.36 Thr + 1.0) [3.6.3]

The second term in Eq. [3.6.1] is bmelt. This term represents the amount of long wave radiation coming
down on the snowpack due to cloud cover and is calculated with:

bmelt = 0.84 (1.0 − clouds) [3.6.4]

The third term, cmelt, is calculated by the following equation:

cmelt = 0.0188 U (1.0−0.8 cancov) (0.396 Thr + 1.404 hrdew)

I
J
J
J
J
L

1.0−

I
J
J
J
L
log

I
J
L rough

Uz − disp + roughhhhhhhhhhhhhhhhh
M
J
O

1.0hhhhhhhhhhhhhhhhhhhhhh
M
J
J
J
O

M
J
J
J
J
O

where, U is wind velocity (m.s−1), Thrdp is hourly dew point temperature ( oC), Uz is the height of wind
measurements (assume 2.0 meters), disp is the zero plane displacement of the surface (m), and rough is
roughness of the surface (m). The roughness depends on snow depth, canopy or stubble height, or the
soil’s roughness, whichever is applicable.

disp = 0.77 Hc
[3.6.5]

where Hc is the canopy height (m), and represents the amount of canopy above the snow.
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The final term, dmelt, represents the hourly air temperature and any heat input from rainfall and is
calculated by the equation:

dmelt = Thr (0.0382 + 0.014 clouds) + Thr (0.000496 hrrain) [3.6.6]

where hrrain is hourly rainfall (m).

Equations 3.6.1-7 deal with four major energy components of the snowmelt process - temperature,
radiation, vapor transfer, and precipitation. When calculating snowmelt, the following assumptions are
made: 1) any precipitation that occurs on an hour when the maximum daily temperature is < 0oC is
assumed to be snowfall; 2) no snowmelt will occur if the maximum daily temperature is < −3oC; 3) the
snowpack will not melt until the density of the snowpack is ≥ 350kg .m−3; 4) the surface soil temperature
equals 0oC during the melt period, 5) the temperature of a cloud base is approximately the same as the
surface air temperature; and 6) the albedo of melting snow is approximately 0.5 (Sutton, 1953). Using
Eq. [3.6.1], if the calculated value of snowmelt hrmelt is less than zero, then hrmelt is set to zero. If it is
greater than the existing snow depth, Dsnew (m), from the preceding hour, then hrmelt equals Dsnew .

3.7 Snow Density

Events which change the snow density and therefore the depth of the snowpack are summarized here:

I. No snow on the ground

A. not snowing
B. is snowing

II. Snow on the ground

A. no melt has occurred

1. no snow is falling
2. ground drift
3. daily settling

B. snow is falling

a. hourly snow
b. ground drift
c. falling drift

C. melt has occurred

1. no snow is falling

a. snow density > 350, melt water
b. snow density ≤ 350, settled snow

2. snow is falling

The variables that represent snow density are ρsold , (old value of snow density), and ρsnew (newly
calculated value of snow density); that is, before and after the snow depth has changed due to snowfall,
melt and/or drift. The units of these variables are kg .m−3, and they are used interchangeably.
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Since density of snow is a function of snow depth, the model also keep track of these depths both
before and after any snowfall or drift has occurred. The variables Dsold refer to the snow depth before and
Dsnew represent the new snow depth after the snowfall or drifting has occurred. In the following section
snow density and depth calculation for various conditions will be described.

The first condition is when there is no snow on the ground but it is snowing. Since the model
assume all fresh snow has a density of 100 kg .m−3, and since there was no existing snow on the ground,
we set ρsnew equal to 100 kg .m−3. On the same time, we see that if no snow is on the ground and there is
no falling snow, the density will simply be set to 0.0 kg .m−3.

The second condition is when the presence of snow has been recognized. The model checks for
any snow that has melted during the past hour. If no melt had occurred, the model checks for snowfall. If
no snow has fallen, then the only way that the depth could have changed is by either ground drifting or
settling of the snowpack. Assuming this condition to be the case, the model then adds the amount of
ground drifting to the variable Dsnew to find the new depth and density. If ground drifting is the only
factor which has changed the snow depth, we assume that the snow density to remain unchanged. Hence
in ground drifting all of the drifting snow is from the existing snowpack. If no snow drifting has
occurred, the settling of the snowpack is calculated using the equation:

setfa = 1 + e−2(fact) [3.7.1]

The variable setfa is the hourly snow settling factor (0-1.0), and fact represents the number of days since
snowfall has occurred. By multiplying the snow depth by setfa we can determine the new density of the
settled snowpack for the hour. With this new settled density we can calculate the new depth of the settled
snowpack by the following equation:

Dsnew =
ρsnew

Dsold ρsoldhhhhhhhhh [3.7.2]

where, Dsnew is the newly calculated depth of the settled snowpack (m), Dsold is the depth of the snowpack
before settling(m), and ρsold is the old density before any settling (kg .m−3).

The other condition to consider is when no melting is occurring and it is snowing. In such a case,
we add new snow to old snow if it exists, and calculate the new snow density using equation:

ρsnew =
Dsnew

ρsold (Dsold + grdri) + (100 (hrsnow + faldr))hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh [3.7.3]

where ρsnew is new snow density (kg .m−3), ρsold is the old snow density before addition of new snow
(kg .m−3), Dsold is the depth before addition of new snow (m), hrsnow is hourly snowfall (m), and faldr is
falling drift (m). The hourly snowfall and falling drift are multiplied by 100 kg .m−3, which is the density
of fresh falling snow. Dsold and ground drift are multiplied by the original snow density, and Dsnew
represents the new snow depth after falling and drifting snow have been added.

The other condition is when snowmelt is occurring. The new snow depth after the hourly melt
calculation is determine by subtracting snowmelt (hrmelt) from Dsold . If the new snow depth is 0.0, then
all snow has melted and ρsnew must go to 0.0. Otherwise, the model calculates the new snow density
given the new snowpack depth by:
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ρsnew = ρsold Dsnew

Dsoldhhhhhh [3.7.4]

Since the model calculates the new density after the melt calculation, we must make sure that the new
snow density is greater than 350 kg .m−3 for melting to occur. Up until that value, the melting snow does
not reach the soil surface but simply increases the snowpack’s density. If ρsnew < 350 kg .m−3, the amount
of melted snow and water is 0.0.

The last condition is the case when melting is occurring at the same time as snowfall. In such a
situation, the model adds the amount of hourly snow to the snow depth and calculates the new density
using the following:

ρsnew =
Dsnew

(ρsold Dsold) + (100 hrsnow)hhhhhhhhhhhhhhhhhhhhhhhh [3.7.5]

The WEPP model sets an upper limit on snow density of 522 kg .m−3.

3.8 Frost Simulation

The soil frost subroutine is based on simple heat flow theory. It assumes that heat flow in a frozen or
unfrozen soil or soil-snow system is unidirectional and that the average 24 hour temperature of the system
surface-air interface is approximated by average daily air temperature. The FROST subroutine predicts
hourly frost and thaw development for various combinations of snow, residue, and tilled and/or untilled
soil and is driven only by daily inputs of maximum and minimum air temperature and snow depth. Snow
and soil thermal conductivity and water flow components are considered as constants. The subroutine
yields values for hourly frost depth, thaw depth, number of freeze-thaw cycles, water accumulated in
frozen soil, and infiltration capacity of the tilled layer or top 0.20 meters of soil if the soil is untilled. The
soil frost subroutine operates by a hourly bookkeeping process that compares calories of heat lost or
gained at the soil surface to heat flow from deeper unfrozen soil layers. Net calories of heat lost or gained
are converted to meters of frozen or thawed soil. Uni-directional heat flow through the frozen soil or
soil-residue-snow system is calculated from the relation:

Qsrf =
Zsrf

Ksrf ∆Tsrfhhhhhhhhh [3.8.1]

where Qsrf is the heat flux through the snow-residue-frozen soil system (W .m−2), Ksrf is the average
thermal conductivity through the combined snow residue-frozen soil depth thickness (W .m−1.oC −1), ∆Tsrf
is the temperature difference across the snow-residue-frozen soil thickness ( oC), and Zsrf is the depth or
thickness of the combined snow-residue-frozen soil layer (m).

Thus, heat flow through the snow-residue-frozen soil layer is the product of an average thermal
conductivity for the layer and an average temperature gradient, with the gradient being the difference
between average daily air temperature and the zero degree isotherm at the bottom of the frozen soil.

The basic assumption is made that the average temperature of the soil (snow) - air interface over a
24 hour period is equal to the average air temperature for the same period. The validity of this
assumption varies with location as a function of those items such as emissivity, radiation, cloud cover,
and wind. For this reason, the hourly surface temperature that drives the frost subroutine is computed by
a surface energy balance routine that modifies hourly air temperature by a local accounting of wind speed,
solar radiation, cloud cover, and atmospheric emissivity (Flerschinger, 1987).

July 1995



3.10

The average thermal conductivity for a layered system can be shown to equal the harmonic mean
for the layers in the system and is given by:

Ksrf =

i =1
Σ
N I

J
L Ki

Zihhh
M
J
O

Zsrfhhhhhhhhh
[3.8.2]

where Zi is the thickness of each layer (m), Ki is the thermal conductivity of each layer, (W m−1°C −1) N
is the number of layers, and Zsrf is the sum of the individual layer thicknesses.

The soil frost subroutine is designed to handle a system with up to four layers - snow, residue, tilled
soil, and untilled soil. In this case the average thermal conductivity equation becomes:

Ksrf =
Ksnow Kres Kftill Utilld +Ksnow Kres Kfutil Tilld +Ksnow Kftill Kfutil Resd +Kres Kftill Kfutil Snowd

(Ksnow Kres Kftill Kfutil)(Snowd +Resd +Tilld +Utilld)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh[3.8.3]

where Ksnow is the thermal conductivity of snow (W .m−1.oC −1) Kres is the thermal conductivity of residue
(W .m−1.oC −1), Kftill is the thermal conductivity of frozen tilled soil (W .m−1.oC −1), Kfutil is the thermal
conductivity of frozen untilled soil (W .m−1.oC −1), Snowd is the snow depth (m), Resd is the residue
thickness (m), Tilld is the tilled soil depth (m), and Utilld is the untilled soil depth (m). With this approach,
if any or all of the snow, residue or tilled depths are zero, the thermal conductivity reduces to the
harmonic mean of the remaining layers.

Over any 24 hour period, Qsrf must be balanced by heat flow Quf from the unfrozen soil below the
frozen layer. The frost subroutine defines Quf as the sum of heat transferred by the thermal conductivity
properties of the soil matrix, the latent heat of fusion in freezing transferred water, and losses in heat
content of the soil. That is:

Quf = Kuf

I
J
L Zuf

Tufhhhh
M
J
O
+ LKw

I
J
L Zuf

Phhhh
M
J
O
+ Cuf dTuf Zc

[3.8.4]

where Quf is the heat flow from unfrozen soil (W .m−2), Kuf is the thermal conductivity of unfrozen soil
(W .m−1.oC −1), Tuf is the change in temperature from the 0 degree isotherm to the depth of stable
temperature ( oC), Zuf is the depth of unfrozen soil to the point of stable temperature (m), L is the latent
heat of fusion (W .s .m−3), Kw is the unsaturated hydraulic conductivity of soil (m.s−1), P is the change in
total water potential (m), Cuf is the heat capacity of the unfrozen soil (W .m−3.oC −1), dTuf is the change in
temperature of a unit volume of soil in unit time ( oC), and Zc is the depth of unfrozen soil that supplies
heat as a result of changes in soil temperature (m) (WEPP assumes a constant value of 1.0 meter).

In this equation, the soil temperature and water potential gradients are those that exist just below
the 0 degree isotherm. As a practical convenience, the model assumes that heat flow through soil thermal
conductivity and soil water movement are separate and discrete units of heat transfer.

The subroutine operates by iteratively balancing over each 24 hour period the heat lost through the
snow-residue-frozen soil zone with heat flow through the unfrozen soil to the freezing front. Iteration is
on an hourly basis for each 24 hour period. During the balancing process, it is assumed that heat lost
through the frozen zone is first balanced by heat flow in the unfrozen soil as a result of the soil’s
temperature gradient and thermal conductivity. Additional heat loss is balanced by the heat of fusion
released by freezing water that is held in place or migrates to the freezing front. Further heat loss is
balanced by changes in soil heat content of the unfrozen soil, the magnitude of which is computed by
difference.
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3.9 Snow Drifting

The snowdrift subroutine determines the distribution of snow over the hillslope by estimating the
depth of snow on the ground at the end of a day in any slope section, depending on the weather that day
and the topography. The snow drifting equations described here are not currently active in the version of
the WEPP computer program released in August, 1995, but they are expected to be used in future
versions. Calculations are based on several initial assumptions:

— the threshold wind velocity for moving falling snow ≈0.89 m s−1 measured at a height of 2 m,
— the surface roughness of a uniform snowpack 0.0002 m, and
— the snow storage capacity of a tilled layer = the random roughness.

The amount of snow trapped and stored by standing vegetation is the storage capacity, St , and is a
function of the height and the projected stem area, or basal density, of the vegetation, the surface
roughness, and the amount of standing biomass. St is calculated as:

St = ε H db Ro

Rthhh + zo
[3.9.1]

where St is the storage capacity of snow (m), ε is the a trapping efficiency (%), H is the height of standing
vegetation (m), db is the basal density of standing vegetation (m.m−1), Rt is the standing residue mass
after tillage (kg .ha −1), Ro is the standing residue mass before tillage (kg .ha −1), and zo is the surface
random roughness (m). The trapping efficiency, ε, reflects the effect of vegetative height and is calculated
by:

ε = (e−0.1H) − 0.1 [3.9.2]

The basal density of the standing vegetation, db , is a function of the mean diameter and the plant
population and is calculated by:

db =
25

ds po
1/2

hhhhhh [3.9.3]

where ds is the mean stem diameter of standing vegetation (m), and po is the plant population
(plants .ha −1).

User inputs to the subroutine consist of the slope facing direction (A) in degrees from north, the
land slope (S) in percent, and the length (L) and width (W) of the slope section in meters. The surface
random roughness is obtained from the SOIL subroutine, and precipitation (Pd), mean minimum daily
temperature (T min), mean daily wind speed (v 2), and mean daily wind direction (W) are all obtained from
the climate input file. The height of standing residue (H), mean stem diameter (ds), plant population (Po),
and the standing residue mass before and after tillage (Ro and Rt) are all obtained from the plant growth
and residue decomposition components.

The snowdrift subroutine works in two parts, first calculating the amount of scouring or drifting of
newly-falling snow occurring on a slope section, or plane, during the day, including any snow drifting
into the section from an upwind section, and then calculating the amount of drifting or scouring of the
existing snowpack. If the drift rate (Dr) calculated for an upwind section is negative, indicating that snow
in that section is drifting out of the section (scouring), then the amount of snow scoured from that upwind
section is added to the snow available for movement in the next downslope section. For falling snow, a
threshold velocity of 0.89 m s−1 at a height of 2 m is assumed for the incipient blowing of snow. In order
to route the blowing snow across the slope, certain assumptions must be made. An upwind slope section
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at the top of the hillslope must accumulate snow unless the wind is blowing in a direction directly
perpendicular to the direction in which the slope faces. Snow drifting onto the upslope section from
upwind is distributed onto successive downwind sections according to a decay function. A downwind
slope section at the top of the hillslope must scour unless the wind is blowing directly perpendicular to
the direction in which the slope faces. If the wind blows perpendicular to a slope section, then no
scouring or drifting occurs and the net change in snow accumulation in that section due to wind is zero. It
is also assumed that there is always a sufficient supply of snow available to satisfy a drifting requirement
for a given slope section.

The friction velocity at the snow surface is calculated using a commonly used mathematical
representation of the wind profile (Schlichting, 1979):

vh =
I
J
L k

v *hhh
M
J
O
ln

I
J
L zo

hhhh
M
J
O

[3.9.4]

where vh is the wind velocity measured at height h (m.s−1), v * is the friction velocity at the snow surface
(m.s−1), k is the von Karman’s constant (assumed to be 0.4), h is the height above the surface (m), and zo
is the surface roughness (m).

After v * is determined, if the value of v * is < 0.087 m.s−1 (the friction velocity corresponding to a
wind velocity of 0.89 m.s−1 measured at a height of 2 meters), then no movement of falling snow will
occur and the new snow depth will be equal to the snow depth from the preceding day plus the depth of
new snowfall. If v * ≥ 0.087 m.s−1, falling snow will begin to drift and the transport capacity of the wind
is calculated from an equation developed by Bagnold (1941) and modified by Iversen et al. (1975):

qsf = c
I
J
L g

ρairhhhh
M
J
O

I
J
L vthf

vfhhhh
M
J
O
(v*

2)(v* − vthf)
[3.9.5]

where qs is the transport rate of snow (kg .m−1.s−1), c is a proportionality constant (= 100), ρair is the
density of air (kg m−3), g is the acceleration of gravity (m.s−2), vf is the settling velocity of a snow
particle (m.s−1) (for falling snow assume 0.35 m.s−1 for a 0.150 mm snow particle falling in still air)
(Schmidt, 1982), vthf is the threshold velocity for incipient motion of falling snow (m.s−1) (assume 0.087
m.s−1), and v* is the friction velocity at the snow surface (m.s−1).

The drift rate of falling snow is then determined from:

Df = 86.4
df Lp

qsfhhhhh [3.9.6]

where Df is the drift rate of falling snow (m.d −1), df is the density of falling snow (kg .m−3)
(≈100 kg .m−3), and Lp is the distance across a slope section parallel to the wind direction (m).

While the threshold velocity for incipient movement of snow varies with the nature of the snow
surface (Radok, 1977), for a uniform surface of freshly fallen snow, the threshold friction velocity for
movement of snow from the snowpack is approximately 0.25 m s−1 (Tabler and Schmidt, 1986) which is
equivalent to a wind velocity of about 5.76 m.s−1 at a height of 2 meters. However, the threshold friction
velocity for movement of snow from a snowpack is a function of the density of the snowpack and, thus,
will increase with time since deposition (Schmidt, 1980). The threshold velocity for movement of snow
from a snowpack, vthg (m.s−1), can be estimated from
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vthg =
I
J
K
J
L

1 − sin

R
J
J
Q

tan−1
I
J
L 100

Shhhh
M
J
O

H
J
J
P

M
J
N
J
O

ln (0.001 dg)

−0.023√ddd3.2x10−7

zohhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

[3.9.7]

where zo is the surface roughness (m), S is the slope (%), and ρsp is the density of the snowpack (kg .m−3).
If the calculated value of v* ≥ vthg , then snow on the ground will begin to move. The transport capacity
of the wind for moving ground snow is then calculated in a fashion similar to that for calculating the
transport capacity of the wind for moving falling snow, as:

qsg = c
I
J
L g

ρairhhhh
M
J
O

I
J
L vthg

vghhhh
M
J
O
(v*

2)(v* − vthg) [3.9.8]

where qsg is the transport rate of ground snow (kg .m−1.s−1), and vg is the settling velocity of a ground
snow particle (m.s−1) (for ground snow assume 0.75 m.s−1 for a 0.220 mm ice sphere falling in still air)
(Schmidt, 1982), and vthg is the threshold velocity for incipient motion of ground snow (m.s−1). The drift
rate of ground snow is then calculated from:

Dg =
ρspLp

8.64 qsghhhhhhhh [3.9.9]

where Dg is the drift rate of ground snow (m.d −1), and ρsp is the density of the snowpack (kg .m−3).

The density of a snowpack on the ground is a function of several factors, including time and
temperature. Daily changes in the density of the snowpack are calculated on the basis of the initial depth
of the snowpack and how much snowmelt occurs each day. In the absence of snowmelt, changes in
snowpack density are estimated daily from the relationship:

ρsp = 0.522 −
I
J
L D
20.5hhhhh

M
J
O
(1 − e−0.0148D) [3.9.10]

where D is the existing snow depth (m). This relationship is based on 14 years of pre-melt snowdrift data
(Tabler, 1985). If snowmelt occurs while the snowpack density is less than 350 kg .m−3, the depth of the
snowpack is reduced by the amount of the melt but the amount of melt water is added to the remaining
snowpack, thus, increasing its density. Once the density of the snowpack equals or exceeds 350 kg m−3,
any additional melt water will either infiltrate the ground or run off.

If Dg exceeds the existing snow depth, D, then Dg is set equal to D. The total drift rate, Dr , is the
sum of the drift rates for falling snow and ground snow, or:

Dr = Df + Dg.
[3.9.11]

After the total drift rate is calculated based on the transport capacity of the wind to carry snow, the
direction of the wind with respect to the direction the slope faces will determine whether the snow is
drifting into the slope section or out of it. Maximum scouring will occur if the direction from which the
wind is blowing is the same as the direction the slope is facing and maximum drifting will occur if the
slope facing direction and the wind direction are exactly opposite each other. As previously stated, if the
wind is blowing perpendicular to the slope, net scouring or drifting will be zero. Thus, to determine the
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net movement of blowing snow into or out of an area, the total drift rate Dr must be multiplied by a
factor, sc, to reflect either scouring or drifting:

sc = 0.0111 |A − W | − 1.0 [3.9.12]

where A is the slope azimuth (degrees from north), and W is the wind direction (degrees from north).

As the degree of slope inclination increases, the efficiency of the drifting process tends to decrease.
This is accounted for by multiplying the net movement of blowing snow by an efficiency factor, i, based
on land slope:

i = 1 − sin

I
J
J
L

arctan
I
J
L 100

Shhhh
M
J
O

M
J
J
O

[3.9.13]

If, due to wind angle and slope azimuth, the net movement of snow is positive, i.e. drifting into a
slope section rather than out of it, the drifting snow will be distributed along the slope in a downwind
direction. The amount of drifting snow falling on any slope section can be approximated by an
exponential decay function:

Dp = 1 −
I
J
L 1 + 10 Lr

e−Lr

hhhhhhhhh
M
J
O

[3.9.14]

where Dp is the total percentage of available drifting snow falling on an upslope area (%) and Lr is the
ratio of the length of the upslope area to the total slope length.

Not all of the moving snow will be deposited since some of it will evaporate. Net sublimation or
evaporation losses can be an important consideration in climatic hydrological balances (Branton et al.,
1972). The amount of evaporation is a function of air temperature, relative humidity, solar radiation, and
particle diameter (Sturges and Tabler, 1981). An estimate of the amount of evaporation occurring can be
obtain ed by considering the distance the snow is being blown along a slope and assuming that under
average conditions, complete evaporation would occur after being blown a distance of about 3050 m
(Tabler, 1975). Then:

Dr = Dr e−0.00066 Lp [3.9.15]

where Lp is the distance across a slope section parallel to the wind direction (m). Evaporation losses are
only calculated for those sections in which drifting is occurring. Evaporation losses of snow from areas
that are scouring would be accounted for in their downwind areas and are neglected here.
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3.11 List of Symbols

Symbol Description Units

A slope facing direction in degrees from North °
alb soil and/or snow albedo %/100%
Cuf heat capacity of the unfrozen soil W .m −3.oC−1

c proportionality constant -
cancov canopy cover 0-1.00-1.0
clouds the decimal fraction value for cloud cover Fraction
conht convective heat transfer coefficient Ly.s.min−1.cm −1

∆Tsrf temperature difference across the snow-residue-frozen soil thickness oC
Df drift rate of falling snow m .d −1

Dg drift rate of ground snow m .d −1

Dp total percentage of available drifting snow falling on an upslope area %
Dr total drift rate m .d −1

Dsnew newly calculated depth of settled snowpack m
Dsold depth of the snowpack before settling m
DF day factor which represents the day of the simulation -
db basal density of standing vegetation m .m −1

df density of falling snow kg .m −3

ds mean stem diameter m
dTuf change in temperature of a unit volume of soil in unit time oC
dellon change of longitude rad
depth the system depth m
disp zero plane displacement m
dmelt hourly air temperature and any heat input from rainfall -
ε a trapping efficiency %
efthco effective system thermal conductivity L.min−1. oC−1

etr energy transfer roughness m
eqla equivalent latitude factor rad
fact number of days since snowfall has occurred d
faldr falling drift m
g acceleration of gravity m .s−2

H height of standing vegetation m
Hc canopy height m
HAS hour angle of the sun rad
HASR position of the sun at sunrise rad
HAST position of the sun at sunset rad
h height above the surface m
hca heat capacity of the air J .kg −1.m −3

hrmelt hourly melt water m
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hrrad hourly estimated radiation MJ .m −2

hrrain hourly rainfall m
hrsnow hourly snowfall m
hrtem hourly temperature oC
incrad slope inclination rad
jday Julian day julian day
Kftill thermal conductivity of frozen tilled soil W .m −1.oC−1

Kfutil thermal conductivity of frozen untilled soil W .m −1.oC−1

Ki thermal conductivity of each layer W .m −1.oC−1

Kres thermal conductivity of residue W .m −1.oC−1

Ksnow thermal conductivity of snow W .m −1.oC−1

Ksrf average thermal conductivity through combined snow- W .m −1.oC−1

residue-frozen soil depth thickness
Kuf thermal conductivity of unfrozen soil W .m −1.oC−1

Kw unsaturated hydraulic conductivity of soil m .s−1

k von Karman’s constant -
L latent heat of fusion W .s.m −3

L 1 longitude of the site rad
LS longitude rad
Lr ratio of the length of the upslope area to the total slope length m .m −1

Lp distance across a slope section parallel to the wind direction m
latrad latitude rad
P change in total water potential m
Pd daily precipitation m
Qsrf heat flux through the snow-residue-frozen soil system W .m −2

Quf thermal conductivity of unfrozen soil W .m −2

qs transport rate of snow kg .m −1.s−1

qsg the transport rate of ground snow kg .m −1.s−1

Resd residue thickness m
Ro standing residue mass before tillage kg .ha −1

Rslp solar radiation on a sloping surface Ly.min−1

Rt standing residue mass after tillage kg .ha −1

Rnet net radiation Ly.min−1

Rpot potential radiation on a horizontal surface MJ .m −2

RADF radiation factor -
RELD relative distance of the earth from the sun rad
radco radiation coefficient Ly.s.min−1.cm −1

radz slope aspect rad
ρair air density kg .m −3

ρsold old density before any settling kg .m −3

ρsnew new snow density kg .m −3

ρsp density of the snowpack kg .m −3

rough roughness of surface m
S land slope %
Snowd snow depth m
St storage capacity of snow m
SBC Stefan-Boltzman constant Ly.min−1.oK−4

SOLCO solar constant MJ .m −2.min−1

STC solar time correction rad
SUND sun declination rad
setfa hourly snow settling factor 0-1.0
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Tave average air temperature of the day oC
Tavek hourly air temperature oK
Thr hourly temperature oC
T max maximum air temperature of the day oC
T min minimum air temperature of the day oC
Thra hourly surface temperature oC
Thrdp hourly dew point temperature oC
Tilld tilled soil depth m
Tuf change in temperature from the 0 degree isotherm to the depth oC

of stable temperature
thr current time of day h
thradj adjusted hour h
thrsr sunrise hour h
Utilld untilled soil depth m
U wind velocity m .s−1

Uz height of wind measurements m
v 2 mean daily wind speed m .s−1

v* friction velocity at snow surface m .s−1

vf settling velocity of a snow particle m .s−1

vg settling velocity of a ground snow particle m .s−1

vh wind velocity measured at height h m .s−1

vthg threshold velocity for incipient motion of ground snow m .s−1

vthf threshold velocity for incipient motion of falling snow m .s−1

vwind wind velocity cm .s−1

W width of slope section m
W mean daily wind direction rad
wsr wind surface roughness m
x equal to 0.000777Tave

2 -
Zc depth of unfrozen soil that supplies heat as a result of m

changes in soil temperature m
Zi thickness of each layer m
Zsrf depth or thickness of combined snow-residue-frozen soil layer m
Zuf depth of unfrozen soil to the point of stable temperature m
zo surface random roughness m
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